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Abstract 

The aim of this paper is to describe the development and 
deployment of a cluster of 20 very low-cost environmental 
monitoring sensors, constructed from cheap and readily 
available, off-the-shelf components. The design of these 
sensors was made particularly challenging since the domain in 
which we were working was pervaded by numerous technical, 
physical, political, social and financial challenges. All of these 
factors result in the need to make numerous compromises and 
complex trade-offs over the course of the development process. 
We explore all phases of the project, from design and 
conceptualisation, all the way through to deployment and data 
retrieval. We discuss the challenges faced and solutions found 
at each step of the way and conclude with a set of “Lessons 
Learned” that may help to guide others attempting similar 
activities. 
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Purpose of Project 
In this current era of limited funding for public green 
spaces, it is essential that informed and insightful 
spending takes place in order to achieve the most optimal 
investment of public money. Only by understanding 
levels and patterns of green space utilisation can we 
make informed decisions to maximise the benefit of such 
spending. 
 
To justify our interest in the provision and upkeep of 
urban parks, we need only consider the public good 
derived from such spaces. This not only includes the 
obvious physical health, mental wellbeing and 
recreational benefits, but also the environmental benefits, 
including the regulation of air quality and climate, water 
quality protection, rainfall retention and storm 
management and reduction the urban "heat island" effect 
[4]. 
 
This paper describes and documents a project to embed 
sensors within urban green spaces in and around the city 
of Plymouth in the UK. The objective of this project was 
to determine the usage patterns of these green spaces in 
order to: 
 

1. Provide a justification for capital investment as part 
of ongoing year-on-year development as well as 
additional one-off intervention expenditure 

2. Assist in the identification of spatial hotspots to aid in 
the geographical targeting of resources (such as 
placement of interpretation signage) 

3. Identification of temporal peak-times to aid in 
delivery of services (such as urban ranger time-on-
site) 

4. To provide quantitative data to support evaluation 
and demonstration of impact of investment and 
provision of resources and services 

5. To aid in spatial and temporal targeting of qualitative 
evaluation tools (such as user questionnaires and 
surveys) to support evaluation and demonstration of 
impact 

 
Data collection through manual observation and counting 
has been undertaken in the past within these spaces, 
however this process has its limitations. Due to the need 
to involve human operatives, it is time-consuming, 
expensive and only practical for relatively short 
durations of study. There was a clear need for an 
automated sensing mechanism that could monitor space 
usage patterns around the clock, for an extended period 
of time. 

Community Participation 
A key element of the described project is the 
involvement of the local community in the long-term 
monitoring and development of urban greenspaces 
within Plymouth. This strategy of inclusion aims to 
increase public perceptions of value and encourage 
greater citizen involvement in the stewardship of these 
public spaces. 
 
Within this project, we wished to involve the community 
(through park rangers and "friends" of the green spaces) 
in both the deployment of devices and retrieval of data. 
As D'Hondt et al observe [2], this kind of participatory 
involvement in sensing projects can help close the 
feedback loop between the gathered data and people who 
live and work in the study environment. Not only are 
citizens crucial in assisting with large-scale data 
collection, but the data gathered can reflect back on 
citizens and nurture their awareness of the environment 
in which they live. 
 



Within such domains, collaboration between Institutions, 
State and Community is become much more common. 
As Loka has noted “More often than not, community-
based research involves the collaboration of community 
members (represented by grassroots activists, 
community-based organisations, etc.) and experts 
(represented by university researchers and professional 
scientists.)” [10]. 
 
Such collaborations have solidified into the notion of 
Community-Based Monitoring, where concerned 
citizens, government agencies, industry, academia, 
community groups, and local institutions collaborate to 
monitor, track and respond to issues of common 
community concern [13]. Legg and Nagy [9] note how 
such approaches can be effective in identifying when an 
ecosystem is departing from a desired state, detecting 
effects of perturbations and disturbances and measuring 
the success of management actions. 
 
Conrad et al [1] identify a number of high-level benefits 
of Community-Based Monitoring including increased 
environmental democracy, improved scientific literacy, 
social capital, citizen inclusion in local issues as well 
benefits to government and the ecosystem being 
monitored. In order to achieve these potential benefits 
Conrad highlights a set of key challenges which must be 
overcome including data fragmentation, inaccuracy, lack 
of objectivity, access to collected information and 
ensuring the utility of data for decision-making and 
environmental management. We hope to address many 
of these challenges within the work we describe. 

Design Constraints 
Whilst attempting to develop a technical solution that 
will achieve all of the objectives outlined above, it is 
essential to keep in mind the various factors that 
constrain and impinge upon the possible range of design 
choices. Any successful solution must demonstrate the 
following characteristics: 
 
1. Easily replicable: a substantial number of devices 

(20) are required to cover the numerous sites and 
locations 

2. Low cost: the devices must be very cheap (only 
£2000 was available for all parts and labour for all 20 
devices). 

3. Environmentally robust: the sensor devices must be 
able to operate in a range of challenging weather 
conditions 

4. Physically robust: the device must be resistant to theft 
and vandalism 

5. Infrastructural independent: the devices must operate 
without need for technical infrastructure (for example 
mains power or data communication network) 

6. Operationally independent: the devices must be able 
to operate without human intervention or 
administrative support for at least 2 weeks (i.e. the 
planned duration of the study) 

 
Although the idea of sensor-based monitoring of green 
space environments is not a new one, there is a tendency 

for such projects to attempt a much higher level of 
complexity (and therefore cost). For example, we can 
consider the Hyde Park Sensing Project [6]. The focus of 
this work was the deployment of a network of wireless 
sensors for the monitoring of soil, air, water and footfall 
within green space environments. Although very relevant 
to our own intended outcomes, this project is far more 
ambitious and extravagant in terms of cost of materials, 
power consumption and required network infrastructure. 
As such, this kind of approach is inappropriate for the 
environment and context of our own work. 

Developed Solution 
We now provide an outline description of the solution 
created by our development team to address the 
objectives and challenges described above. In order to 
fall within the very limited budget, it was essential to 
make use of cheap, mass-produced, readily available off-
the-shelf components (as there was neither the time nor 
the money to develop bespoke equipment and 
components). For these reasons the core of the sensor 
device makes use of the “Ardulog” Arduino-based data 
logging board [8]. This provides a low-cost 
programmable microcontroller with integrated real-time 
clock and SD card data logging facilities. By using an 
SD card to log data, we remove the need for expensive 
and power-hungry network communication 
infrastructure. Although this means that the stored data 
must at some time be manually retrieved, this is a task 
that can easily be carried out by volunteers, thus helping 
to ensure the close involvement of the community in the 
monitoring process. 
 
The actual sensor used to detect human presence and 
activity was a passive infrared detector (a type used in 
burglar alarms, automatic lighting systems and so on). 
These are very simple, widely available devices that 
sense movement by monitoring subtle changes in 
infrared radiation given off by warm objects (such as 
humans). These detectors are typically used for wide-
area sensing, however we were able to achieve more 
directional operation by masking off the device and 
using a guide hole to narrow the angle of coverage. We 
chose not to use beam-braking or camera-based devices 
due to the higher power consumption of such sensors.  
 
We made use of standard AA batteries to provide power 
for the whole device. Using open-source software 
libraries, it was possible to develop very power efficient 
firmware to run on the logging boards. This involved 
putting the device into a power saving “deep-sleep” 
mode, with it only being woken when movement was 
detected by the infrared sensors. Using this approach we 
would expect the AA batteries to last at least 4 weeks, in 
normal working conditions [7]. 
 
It proved impossible to find a single integrated, 
waterproof, temperature resistant, vandal and theft proof 
container within the limited budget. We could not 
identify a single case that met all of the above 
requirements. To solve this problem, we ended up using 



a composite enclosure that consisted of two separate 
layers (see cross-section diagram in Figure 1 below). 
 
Figure 1. Composite Enclosure Cross-section 

 
The inner layer was a thin waterproof plastic tube, 
repurposed from off-the-self bubble wands (Figure 2). 
The outer layer was a thick wooden fencing post with a 
deep hole drilled into it to receive the inner plastic tube 
(Figure 3). Additional holes were drilled in the wooden 
post to allow the infrared sensor to detect activity and a 
downward-facing drainage hole to prevent the 
accumulation of water inside the post. A thick wooden 
cap (secured by “star drive” screws) was attached to the 
top of the post to protect the device from the elements 
and from theft. The completed whole was then wire-tied 
to a permanent structure (e.g. existing signs or fence 
posts) again to help prevent theft. 
 
Figure 2 & 3. Inner and Outer layers of enclosure  

 
The composite two-part enclosure provided ideal 
protection for the sensor device. The outer wooden layer 
provided robust, tough and insulated protection from 
physical damage and temperature extremes. The inner 
plastic tube provided a final waterproofing layer to 
protect the delicate components during insertion and 

removal from the wooden post and to prevent humidity 
and condensation affecting the electronics. We did 
consider using a desiccant (silica gel beads) inside the 
plastic tube, however previous experience indicated that 
this could be counter productive – with the desiccant 
acting as a water pump (drawing moisture into the tube) 
if the lid is not perfectly airtight. The selection of bubble 
wand used in the design was crucial as its diameter was 
limited by maximum size of standard off-the-shelf drill 
bit that could be purchased. 
 
In order to document the creation of the sensor devices 
and enclosure and to enable other groups to make use of 
our findings, we have produced an online tutorial 
describing the process. This has been published on the 
“Instructables” website (a site frequented by crafters, 
makers and electronics hackers) in order to promote the 
device to the grass-roots environmental monitoring 
community [3]. 
 
Figure 4. Map of Greenspaces within Plymouth 

 

Deployment 
For the deployment of the sensor devices, we chose 
various different green spaces in the Plymouth area (see 
map in Figure 4). Within each green space we selected a 
number of different locations to site the sensors. The 
selection of these locations was based on a number of 
different criteria: 
 
- Entry and exit points into the green space areas 
- Particular pinch points (such as gates and bridges) 
- Areas of suspected congregation of green space users 
 
An additional limiting factor was the availability of 
existing permanent structures (e.g. signs and fence posts 
etc.) against which the sensor devices could be securely 
fixed. A final deployment constraint was the need to set 
the height and the angle of the sensors in order to avoid 
false positive readings (due to proximity to areas such as 
car parks and known badger habitats).  



The sensors were deployed at the indicated locations and 
left to collect data for a period of two weeks. After this 
period of time, the sensors were collected by members of 
the team and brought back to the lab for data analysis. 
Training sessions and written instructions were provided 
to those collecting the data to ensure that collection 
procedures were followed to minimise the risk of data 
loss or sensor damage. 

Data Retrieval and Processing 
In order to retrieve the data that had been collected by 
the sensor devices, the SD memory cards were ejected, 
inserted into a laptop and all the data files copied across. 
The raw data consisted of individual timestamps that 
indicate the exact time when activity had trigged the 
infrared sensor. The combined raw data for all 20 sensors 
consisted of 170k individual timestamps for the two-
week deployment. 
 
In order to convert this data into a suitable format for 
visualisation and interpretation, it must first be 
aggregated together. The raw timestamps hold little 
information on their own – they must be combined 
together into rates (e.g. triggers per minute or per hour) 
in order to yield useful information. This aggregation is 
achieved using a “bucketing” algorithm, whereby a day 
is split into a fixed number of timeslots (e.g. one for each 
hour of the day) and the various sensed timestamps are 
distributed appropriately in order to fill those timeslot 
“buckets”.   
 
Once this aggregation task is complete, the data can then 
be visually rendered using one of a number of different 
visualisation techniques. The visualisations rendered as 
part of the project included the following: 
 
- Simple line graph: Height of the line above the x-axis 

indicates activity rates 
- Linear temporal heatmap: Colour “temperature” of a 

bar indicates activity rates 
- Radial temporal heatmap: Colour “temperature” of a 24 

hour ring indicates activity rates 
- Cloud clustering diagram: Size and opacity of a cloud 

formation indicates activity rates 
 
Examples of each of these types of visualisation are 
shown in figures 5 to 8 below. 
 
Each visualisation technique has its own advantages and 
disadvantages and reveals different aspects of the data. 
Some are useful for gaining an overall appreciation of 
the patterns of activity with in the green spaces, others 
provide more detailed, low-level insight into visitor 
numbers. 
 
 
 
 
 
 
 
 

Figure 5. Simple Line Graph 

 
Figure 6. Linear Temporal Heatmap 

 
Figure 7. Radial Temporal Heatmaps 

 
Figure 8. Cloud Clustering Diagram 

 

Observations and Findings 
In this section we present a number of observations 
relating to the various phases of the project. In particular 
we discuss the successes and failures of the various 
design decisions made and strategies that we have 
employed; we consider the accuracy of the data 
collected; finally we examine the role of visualisation in 
the interpretation of the data. 
 

Failure Rates 
Of the 20 devices deployed we experienced an attrition 
rate (failures, damage, theft) of approximately 20-25%. 
This number was very much within the range we 
expected and included: 
 
- One device with wiring problem that failed shortly 

after installation 
- One device with installation problems that produced a 

constant stream of false positive data 
- One device with a failed clock battery (the clock 

became reset to 1st Jan 2000) 
- Two posts that had been vandalised and the sensor 

devices stolen/destroyed 
 
No problems with condensation or extremes of 
temperature were experienced, however the temperature 



range during the study was not particularly wide, varying 
as it did between 6-20 degrees Celsius. 
 
The construction of the composite enclosures were 
robust and the wooden posts proved rugged and damage 
resistant. The two devices that were vandalised where 
those that were not as securely anchored to permanent 
structures as the rest. One factor which is likely to have 
contributed to the survival of the majority of the devices 
was an attempt to “normalise” their appearance. It was 
noted during the installation process how new and clean 
the posts looked. This would have undoubtedly attracted 
the attention of passers-by to these new additions to the 
green spaces. By rubbing mud into the posts once they 
were in situ, we are able to better blend them into the 
environment and make them much less conspicuous. 
 

Data Accuracy 
One of the main concerns that arose during the project 
was the issue of data accuracy. Hondt et al observe that 
the main hurdle to be overcome with most participatory 
sensing projects is that of data quality. Homemade, low-
cost sensors are frequently less accurate than 
professionally equipment and the key question raised is 
whether the volume of data collected can compensate for 
the inherent lack of accuracy. In the case of our project, 
the main source of inaccuracy was the reliability of the 
infrared sensors and the false-positive triggering of the 
devices by a range of environmental phenomenon. These 
included dogs being exercised, badgers at night, the glare 
from the sun, people loitering near the sensors, and even 
people playing “Pokemon go” in the parks. 
 
It is essential to ask ourselves what impact this data 
inaccuracy has had on the outcome of our study. Clearly 
it is important that we are aware of the limitations of the 
data and do not attempt to interpret it purely at face 
value. It is important to take a pragmatic approach to 
working within the constraints of the study and we have 
learned to embrace the incompleteness and inaccuracies 
in the derived data sets. Provided that we are aware of 
the deficiencies within the dataset, we may still derive 
utility from the raw data. As long as we accept it as an 
indication of activity levels within the green spaces 
(rather than an absolute measure of footfall) we can infer 
useful information from it. 
 
In a similar study D’Hondt describes how the systematic 
and scientific calibration of cheap monitoring devices 
can greatly improve the accuracy of collected noise 
pollution data [2]. In so doing, it is possible to collected 
data of equivalent (or even superior) quality to 
professional and scientific gathering techniques. It is 
likely that a similar approach to calibration could be 
developed for use with our own work. Although beyond 
the scope and timeframe of our project, we did undertake 
a short period of small-scale manual counting as an 
attempt to provide a rough validation of the data 
collected by the sensors. By extending such activities, it 
would be possible to derive a number of calibration 
formulae that could allow extrapolation of more precise 
footfall data from the raw motion/activity data. This 

however is very much future work, with much more 
effort required to develop these formulae for a range of 
locations and conditions and to assess the level of 
accuracy of the derived results. 
 
Even without such calibration, we argue that valuable 
information may still be derived from the raw gathered 
data. In their paper on volunteer monitoring of water 
quality, Savan and Gore observe that patterns and 
changes are often the most useful (and achievable) 
results. Participatory monitoring groups often focus on 
biological indicators that provide a warning of 
problematic water quality, rather than rigorous and 
precise measures water chemistry. In a similar way, our 
focus on abstract patterns of behavior (rather than 
absolute measures of footfall) can provide valuable 
insights into the usage of green spaces. This is aided by 
suitable visualisation techniques that support 
investigation and discussion of such abstract patterns. 
 

Data Visualisation 
The range of previously illustrated visual representations 
has allowed us to abstract over the low-level inaccuracies 
of the raw data and permitted overall patterns to be 
observed. Exploration of these visual patterns (in 
particular through the use of heatmaps) enabled some 
interesting discussions to take place between the 
technical support team and the green space managers. It 
is important to note that the described visualisations are 
not just static images, but are interactive in nature, with 
adjustable degrees of aggregation and controllable levels 
of contrast. To illustrate this, the screenshots in Figure 9 
below show the same day, but with varying levels of 
contrast.  
 
Figure 9. Varying levels of Contrast 

 
Using such interactive visualisations, we can manipulate 
the settings to reveal interesting patterns within the data 
sets. Observable patterns include expected behaviours, 
such as peak times on Sundays (see 30/10/16 in Figure 
10) when many people go out for a walk in the park; the 
impact of wet weather on people desire to be outside 
(Figure 11 shows correlation between heatmap and the 
precipitation graph in blue below). In addition to these, 
there were also various unexpected behaviours, a prime 
example being the “Mysterious Monday” segment shown 
in Figure 12 below. 
 
 
 
 
 
 
 



Figure 10. Popularity of Sunday 

 
Figures 11 & 12. Impact of rain & “Mysterious Monday” 

 
This “Mysterious Monday” segment is worthy of further 
discussion. It was first identified during data retrieval 
and investigation in collaboration with the green space 
managers. It illustrates an unusual anomaly at what is 
typically a quiet location, during a quiet time of the 
week. No official event had been planned and no one on 
the team was aware of anything unusual taking place 
within the park at that time. After an interesting 
discussion over the possible causes of this anomaly, it 
was concluded that it was most likely to have been a 
school field trip (or similar event) visiting the park that 
day. What the “Mysterious Monday” segment does 
illustrate is the rare insight into behavioral patterns of 
usage that the gathered data offers us. Insight that would 
not have been possible if it were not for the sensor 
devices deployed within the various green space 
locations. 

Lessons Learned 
In this concluding section, we draw upon all of the 
experiences gained during this project. It is hoped that 
the insights gleaned may help others attempting similar 
work. We summarise these experiences in the following 
concise list of 9 lessons learned: 
 
1. Construction can often be achieved entirely from 

cheap, readily available off-the-shelf components. 
"Cheap" does necessarily equate to “badly designed”, 
although it often requires more creativity and 
ingenuity to work within tight budgetary constraints. 

2. The design of effective enclosures is by no means a 
non-trivial task should not be overlooked. Time and 
money should be invested in creating them and this 
task should not be taken for granted nor left until last. 

3. Training is crucial to the success of volunteer-
supported deployment, recovery, data interpretation 
and visualisation. Without suitable support there is 
the danger that inaccuracies will be introduced, data 
lost or delicate equipment damaged. 

4. Anticipate loss and failure because it will almost 
certainly occur. Incorporate strategies to deal with 
such failures, for example ensuring redundancy and 
designing for modular replicability. 

5. Manage expectations of decision-makers and 
sponsors regarding anticipated accuracy and 
completeness of the final data set. Ensure that they 
are made aware of the anticipated quality of the data 
as development progresses, so that there will be no 
disappointments at the end of the project. 

6. Focus on capturing relative measures that flag 
change, rather than attempting absolute measures of 
questionable accuracy. It is better to derive simple, 
reliable data rather than trying (and failing) to 
measure the impractical. 

7. Suitable aggregation, abstraction and visualisation 
tools are crucial to extracting useful information from 
dirty data. Without such features the holes within the 
data will obscure the informative patterns that do 
exist. 

8. Systemic calibration is a potential route to deriving 
more accurate absolute data (if it is truly required). It 
is important to ask ourselves whether such data is 
truly essential in order to achieve the objectives of 
the study. 

9. Urban sensing is often just as much a sociological 
challenge as it is technical or environmental one. We 
cannot disconnect the physical environment from its 
social context and must therefor design our devices 
and protocols to deal with issues such as community 
buy-in, volunteer ability, device theft and vandalism. 

 
As a final observation, we reflect on the fact that some of 
the activities involved within the described project were 
manual and labor-intensive in nature. The various 
physical, technical and financial constraints placed upon 
the project meant that it was impossible to develop fully 
autonomous and independent sensor devices. The main 
two technical challenges that stood in the way were 
power consumption and data communication. It is 
interesting to note that some exciting developments 
within both of these areas are currently being explored 
within the wider research and development domain. This 
includes energy harvesting, with technology such as 
FreeVolt [5] and low-power, long-range communication 
technologies, such as LoRa [11] and Sigfox [12]. Clearly 
there is likely to be some interesting innovations in the 
area of low-cost environmental sensor devices in the near 
future when such technologies become cheaper and more 
widely available. 
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